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ABSTRACT

Comparison of lead exposures for children who live at
different sites requires both comparability of data bases and
comparability of statistical analysis methods. Data bases
require comparable measures of environmental lead concentrations,
common biological exposure indices such as venous blood leads,
comparable protocols for sample collection, and child-specific
mouthing behavior indices. Statistical models should have the
same equation specifications, and should control confounding,
multicollinearity, and surrogate variable measurement errors by
use of coupled structural equation models. Site-specific
adjustments for other covariates may be necessary. We illustrate
solutions to these problems by comparing three epidemiology
studies in lead smelting or mining communities: Kellogg-Silver
Valley, Idaho; East Helena, Montana; Midvale, Utah. There may be
some real site-specific differences in bioavailability of soil
lead and in the strength of environmental pathways from soil lead
to dust lead to blood lead. There were not significant
differences in the relationship of household dust lead or hand
lead to blood lead. Soil lead is a significant source of
interior household dust lead in all communities, even when the
direct pathway from soil lead to blood lead is not very
significant.
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1.0 INTRODUCTION

There is a growing perception that not all forms of
lead encountered by U.S. children in their environment are
equally bioavailable (Chaney et al. 1988; Steele et al. 1990).
This has some very important implications for site-specific
health risk assessments, particularly with respect to setting
clean-up levels for lead-contaminated soils. For example, lead
in soil may come from several sources, including:

(1) deposition of airborne particles emitted by
smelters or by other industrial sources;

(2) deposition of airborne fugitive dust emissions from
mine wastes or from mill tailings piles;

(3) fill material from lead-contaminated sewage sludge,
waste combustor residuals, etc.

(4) deposition of lead paint from deteriorating
exterior lead-based paints on nearby buildings;

(5) deposition of residues from lead paint abatements;
(6) runoff from highways and other lead surfaces;
(7) fill material from other lead-contaminated sites

containing any of the above sources;
(8) natural geological processes.

Thus the terms "soil lead" and "house dust lead"
embrace a wide class of chemical and physical properties.
Differences in the fraction of ingested lead absorbed into the
blood are known, from animal experiments, to depend on particle
size, chemical speciation, and dietary cofactors [see reviews by
Chaney et al. (1988) and USEPA (1986, 1989)]. A number of
studies on lead absorption by adult humans are qualitatively
consistent with the animal studies, but do not provide definitive



quantitative extrapolation to young human children, the
population at greatest risk. We are not aware of any clinical
studies that can be used to quantify the soil lead uptake of
young children. The only studies that are available appear to be
observational studies of populations of lead-exposed children.

Some very important studies currently in progress are
longitudinal studies in which changes in blood lead levels are
observed following an intervention or abatement of a particular
source of lead. These include the Superfund Soil Lead Abatement
Demonstration Projects (SSLDAP) in Baltimore, Boston, and
Cincinnati (Farrell et al. 1988; Mclntyre et al. 1988; Clark et
al. 1988). The interim report on baseline lead exposures has not
yet appeared, and earliest results on the effectiveness of soil
lead abatement in urban areas are not expected until June 1991.

Longitudinal studies on the effectiveness of paint lead
abatement are now being carried out in New York City (Rosen et
al. 1990). These studies include both blood lead and bone lead
data as indices of childhood exposure, but do not contain
sufficiently detailed information on lead pathways (soil, dust
lead) or characterization of paint (e.g. lead chromate vs. lead
carbonate) to assess bioavailability.

The least satisfactory source of data that is still
useful is cross-sectional observational data. Typically, a
random sample or a largely complete sample of children in some
community is obtained. The information is as nearly child-
specific as possible. Environmental data include observed lead
concentrations in media to which the child is typically exposed,
such as yard soil, dust at several locations in his/her dwelling
unit, tap water lead, lead in outdoor air etc. Paint lead
loadings at several interior and exterior locations on the
dwelling unit are currently measured by X-ray fluorescence (XRF),
but in earlier studies may be characterized as concentrations in
paint chips. In some recent studies, lead loadings on childrens'
hands is available. Many studies now include child behavioral
assessments, parental involvement, and questions about other lead



sources in the child's environment (such as secondary
occupational exposure, home lead hobbies and work, removal of
lead-based paint). Blood is the response variable, and the
regression coefficient between blood lead and soil lead
concentration (also known as the blood-lead vs. soil lead
"slope") is a useful relative aggregate index of exposure (Marcus
and Cohen 1988).

A more general and useful method for interpreting
cross-sectional blood lead studies has been introduced by
Bornschein et al. (1985, 1988), the structural equation model.
This is a form of pathway analysis that separates the direct and
indirect effects of each lead exposure source. For example,
regarding "soil lead" as a source of blood lead, we recognize
both a direct pathway to blood lead (soil lead —> blood lead)
from ingestion of exterior soil, and an indirect pathway in which
soil lead contributes part of the house dust lead burden, which
is subsequently ingested (soil lead —> dust lead —> blood
lead). The relative importance of the source and the pathway nay
thus be separated.

In this paper we will discuss the adequacy of the data
and of the statistical methods of analysis for comparing the
amount of soil lead uptake that can be expected for children
living at various sites. The most important issues for data
adequacy are the comparability of the measurements that are made
at various sites, surrogate variable ("measurement error")
problems with lead exposure indicators, and recruitment of the
sample population. The most important statistical modeling
problems are model specification. use of covariates and
confounders, and estimation methods for lead pathway models.
These are discussed in Section 2. In Section 3 we present
results of blood lead regression analyses for two lead smelter
communities visited by CDC in 1983: Kellogg, Idaho and East
Helena, Montana. In Section 4, the role of model specification
and statistical methodology are explored in detail for the East
Helena data set. In Section 5, structural equations models are



compared for the Kellogg and East Helena sets, and in Section 6
for the Midvale, Utah site. The implications for cross-site
comparison are reviewed in Section 7.



2.0 MATERIALS AND METHODS

2.1 DATA SET ADEQUACY

2.1.1 Data Sets Used In EPA Analyses and Subsequent Studies
Our discussion is based on the cross-sectional studies

referred to in the USEPA Air Quality Criteria for Lead (1986) ,
(Marcus and Cohen 1986), and the USEPA Exposure Analysis
Methodology and Validation (1989). The soil or dust lead studies
on which (USEPA, 1986, 1989) placed the greatest reliance were
carried out in the following North American locations:

Active primary lead smelter:
Bartlesville, Oklahoma, 1979.
East Helena,^Montana, 1983.
El Paso, Texas, 1973.
Kellogg, Idaho, 1974, 1983.
Palmerton, Pennsylvania, 1979.
Trail, British Columbia, Canada, 1975.

Primary zinc smelters:
Ajo, Arizona, 1979.
Anaconda, Montana, 1979.

Urban area with secondary lead smelter:
Omaha, Nebraska, 1970's.

Urban area with other lead sources:
Baltimore, Maryland, 1977-1990.
Boston, Massachusetts, 1980-1990.
Cincinnati, Ohio, 1980-1990.
New Haven, Connecticut, 1974-1977.
Charleston, South Carolina, 1975.
Minneapolis-St. Paul, Minnesota, 1987.

There were also useful European soil or dust lead studies:
Urban areas:

Rotterdam, The Netherlands
Birmingham, England, U.K.
Edinburgh, Scotland, U.K.



Secondary Lead Smelters:
Arnhem, The Netherlands, 1979.
Belgium, 1974-1978.

Old lead mining areas:
Derbyshire, England, U.K.

There have been a number of recent studies in former lead mining
and smelting communities in the western U.S., including:

Leadville, Colorado, 1988.
Midvale, Utah, 1989.
Park City Utah, 1988.
Telluride, Colorado, 1987.

2.1.2 comparability of Measurements
Problems in synthesizing the diverse data from these

studies have been reviewed by USEPA and by Steele et al. (1990).
The major problem is that soil lead has been sampled in cores at
different depths and at different locations with respect to the
child subjects, so that the predictiveness of a relationship
found in any individual study may not be closely related to that
in some other study where soil lead concentration was determined
at some other depth or location. Even where sampling methods
have been nearly identical, there may be significant differences
in child lead exposure due to behavioral and cultural factors.
For example, in warm climates there will be more opportunities
for soil lead to enter house dust through open doors and windows,
and more opportunity for children to play outside, than in cold
climates. On the other hand, frequent use of air conditioners
may reduce this pathway in warm climates. Frequency of hand
cleaning or house cleaning may differ from one community to
another. Awareness of hazards from lead-contaminated soil may
also increase parental intervention in preventing childhood lead
exposure, and this is likely to be greater in communities with
large lead sources. The season when sampling is carried out is
also important, since child blood lead levels are typically much



higher in summer than in winter, so that the blood lead vs. soil
lead slope may indeed not be comparable if blood leads are
measured at different seasons.

Soil lead and dust lead sampling methods have become
increasingly standardized in recent years. The methods developed
by investigators in the Baltimore, Boston, and Cincinnati soil
lead abatement demonstration projects in progress reflect current
"state of the art" approaches. Soil samples in cores at depths
of 2 cm and 15 cm are taken at a uniform sampling grid close to
the house, and other samples at the yard edge and in the child's
play area. Dust samples are taken on floors in the child's
indoor play areas and bedroom, and other locations. The sampling
sites, indoors or outdoors, depend on the configuration of the
dwelling unit and so cannot be completely uniform. Thus the
composite "soil lead concentration" from one city may represent
something different in different cities due to unintended
differences in housing types. Even so, this is likely to be the
most nearly comparable set of soil lead vs. blood lead data, by
design, when these studies are completed.

Earlier studies that collected data generally
comparable to the SSLDAP studies include preceding studies in
Boston and Cincinnati, and studies carried out by the Cincinnati
investigators in Telluride and Midvale. The studies carried out
by the Centers for Disease Control in East Helena and in Kellogg
in 1983 should be comparable to each other, and to similar
studies in Park City. The Leadville study used very similar
methods to the SSLDAP and the data should be comparable. All of
the studies identified in this paragraph showed considerable
sensitivity to capturing all of the major sources of childhood
lead exposure. Differences in soil lead measurements and in dust
lead measurement methods (e.g. dust loadings from wet wipes vs.
lead concentration in vacuum cleaner samples) may need to be
resolved.



2.1.3 surrogate Variable ("Measurement Error") Problems
Even though sampling protocols for soil, dust, and

blood lead are increasingly consistent, there is still some
concern about the adequacy of these measurements as indicators of
environmental lead exposure. In order to mechanistically model
childhood soil lead exposure, one would have to have a detailed
child behavior profile that estimates the length of time a child
spends in each micro-environment (by season and weather), the
amount of hand-to-mouth activity, and the frequency of hand
cleaning and parental intervention. Then lead intake could be
calculated accurately as the product of the soil lead
concentration in each micro-environment, the amount of soil (or
soil-derived house dust) consumed there, and interference with
absorption of ingested soil lead from meals or other factors.
This is not feasible.

Sometimes a reasonable surrogate variable can be
constructed from interview data. For example, suppose the
interviewer asks the child's caretaker "about how often does
he/she put dirt or soil into his/her mouth? Once a week _ Once
a month _ or practically never?" The responses could be coded,
e.g. by monthly frequency (4, 1, 0), or a non-linear coding such
as a geometric scheme (e.g. k*k, k, 1 respectively) . Then the
product of concentration by mouthing frequency may be more
predictive of lead intake and blood lead than concentration
alone.

The uncertainties introduced by use of surrogate
exposure variables can have serious statistical consequences.
These uncertainties are propagated (not resolved) when our
understanding of environmental lead exposure is formalized in
computer simulation models.

2.1.4 Recruitment of the Sample
The comparison of blood lead vs. soil lead slopes

should also take into account the nature of the populations
sampled. Differences in cultural or social aspects of child



behavior can mitigate blood lead vs. soil lead slopes. For
example, different groups in the same community may have
different patterns of lead exposure. No set of environmental
variables alone can characterize those differences. The use of
appropriate covariates may allow us to adjust lead exposure
models, but does not guarantee an explanation of site-specific
differences in lead uptake.

Other differences may be present among studies. For
example, in a prospective longitudinal study, it may be
appropriate to recruit only one sibling under age 7 from each
family. The argument is that children from the same family may
be more similar to each other than children from different
families, thus show less variability in response than children
from different families. On the other hand, it is often
impossible to avoid enrolling all children whose caretakers would
like them to be tested. A recent study in Leadville found no
significant reduction in variability by including multiple
siblings from the same family (Colorado 1989). The question of
the population to whom a blood lead vs. soil/dust lead
relationship can be generalized is always present.

2.2 ADEQUACY OF STATISTICAL METHODS

2.2.1 Model Specification
In modelling the relationship between blood lead and

environmental lead, the primary concern is that the model should
be consistent with our understanding of the biological and
physical properties of lead metabolism. The EPA documents have
stated that the relationship between blood lead and lead exposure
is apparently nonlinear at sufficiently high levels of exposure,
but that the near-linear biokinetics of lead in humans implies a
near-linear relationship between blood lead and environmental
lead at currently important levels of exposure. That is,
denoting lead concentrations in blood, air, dust, soil, and water
respectively by PbB, PbA, PbD, PbS, PbW, then for some



coefficients b2 , bx etc., the underlying relationship is
approximately of the form

PbB = b2 + bx*PbA + b2*PbD + b3*PbS + b4*PbW + etc.
(Equation 2-1)

The distribution of the response variable PbB and of
the predictor variables PbA, PbD, PbS, PbW is generally highly
skewed, often approximately log-normal. The usual assumptions
for fitting linear statistical models require that, for fixed
values of the predictors, the response variable is normally
distributed, with the same variance at each set of (fixed)
predictor values. This is often contradicted in observational
data sets, in which variability tends to increase with increasing
mean blood lead. This suggests that a better specification would
be the multiplicative error model,

PbB =( b2 + bĵ PbA + b2*PbD + b3*PbS + b4*PbW + etc.)*
exp( random error)

(Equation 2-2)

After taking logarithms of both sides of Equation 2-2, we have

log (PbB) = log( b2 + b1*PbA + b2*PbD + b3*PbS + b4*PbW
+ etc . ) + random error

(Equation 2-3)

This is a much more appropriate form for estimation of the
regression coefficients for predicting geometric mean blood lead
(GMB) . GMB = exp (predicted log(PbB) ) . The sum of log-normally
distributed components on the right-hand side of Equation 2-2
will also have a highly skewed distribution (not necessarily
lognormal) , but the logarithmic transformation of the sum on the
right-hand side of Equation 2-3 will also tend to normalize the

10



distribution as well. Our regression analyses in Section 3 are
based on Equation 2-3.

Because of the desire to use normally distributed
variables in regression analyses and structural equation models,
an alternative model is often used for curve-fitting,

log(PbB) = log(K0) + K1*log(PbA) + K2*log(PbD) +
K3*log(PbS) + K4*log(PbW) + etc.

(Equation 2-4)

Note that Equation 2-4 is very different from Equation 2-3, and
that the regression coefficients in Equation 2-4 cannot be
directly translated into those of Equation 2-3. Equation 2-4 is
also physically implausible. Suppose that we set water lead
levels to zero (PbW =0) in a lead smelter community with
elevated levels of PbA, PbD, and PbS. Then Equation 2-4 yields
an estimated geometric mean blood lead of 0 jig/dl, which is
absurd. Yet Equation 2-4 or its analogues have been used by many
investigators without regard to the limited range over which it
can be extrapolated. Equation 2-4 is similarly limited in its
ability to estimate blood leads from soil lead cleanup levels,
since exponentiating Equation 2-4 on both sides results in the
prediction model for geometric mean blood lead,

Ki K2 K3
GMB=K0 * PbA * PbD * PbS * exp(etc.)

(Equation 2-5)

As a practical matter, the goodness of fit of log(PbB) is roughly
similar for both Equation 2-3 and 2-4 in many observational
studies, since the amount of variance in individual blood leads
explained by either prediction model is rather low, about 30%.

Our recommendation is that the appropriate linear model
specification. fitted by a nonlinear regression method, is much

11



preferred to the intrinsically nonlinear model 2-5 fitted by a
linear regression method. The widespread availability of good
non-linear regression programs in statistical packages for
mainframes and personal computers should make this recommendation
practicable for non-statisticians. As with any iterative
computational procedure, plausible initial values for estimates
are needed to start the search procedure for "optimal" parameter
estimates.

2.2.2 Use of Covariables and Confounders
Comparison of blood lead slopes at different sites is

facilitated if the regression or structural equation models
contain exactly the same set of covariates. For example,
children from low SES/low income families in lead smelter or
mining towns may live in older parts of town closer to the lead
source, and may have less parental control of lead exposure. If
all of a group of highly correlated predictor variables are used
in a regression model, the estimated coefficients may be
statistically unstable. Furthermore, the role of intervening
variables may be confused, since the direct and indirect effects
of the blood lead predictors are not separable except using
structural equation models.

2.2.3 Estimation Methods for Pathway Models
Model specification issues are particularly important

in fitting pathway models for lead. The estimation and testing
of causal pathway models that determine mean and covariance
structures is known as structural equations modeling.
Theoretical arguments for linear relationships among air lead,
dust lead, and soil lead are presented by USEPA (1989) . A
typical set of relationships for a pathway model from air lead to
blood lead is:

PbS = aQ + a.^ PbA + other soil lead sources
(Equation 2-6)

12



PbD = c0 -i- G! PbA + c2 PbS + other dust sources
(Equation 2-7)

PbB = b2 + b^PbA + b2*PbD + b3*PbS + b4*PbW + etc
(Equation 2-8)

Additional terms could involve exterior or interior paint lead,
secondary occupational exposure, and paint removal. For reasons
given above, it would be convenient to fit this linear system
after logarithmic transformation. There are relatively few
programs that can be used to estimate parameters in an
intrinsically nonlinear relationship, of which SAS/ETS PROC
SYSNLIN (SAS 1988) is probably the most common.

We do not recommend fitting models that are linear in
logarithms . even though this is commonly done. The logarithmic
linear models have the same problems of interpretation described
in Section 2.2.1. The linear models are not required to meet
assumptions of normal distributions, unless one chooses to use
maximum likelihood estimation methods that assume normally
distributed variables. Since other methods are available for
structural equation estimation, it is not necessary to
deliberately misspecify the intrinsically linear model (2-6) to
(2-8).

An alternative approach is to fit the linear system
specification (2-6 to 2-8) without logarithmic transformation,
but using a relatively robust estimation method that does not
require normally distributed variables. The asymptotically
distribution-free generalized least square (AGLS) implemented in
the EQS package (Bentler 1989) often works well in practice.
However, AGLS is essentially a "method of moments" procedure,
thus requires large sample sizes to produce good results. We
have found the EQS elliptical distribution generalized least
squares method (EGLS) often provides good models, even in small
samples.

14



Systems of equations should not be fitted
independently, if possible, since response variables in some
equations (2-6 and 2-7) are used as predictor variables in other
equations (2-8). This violates a basic implicit assumption in
linear and nonlinear regression programs, that each input or
predictor variable or covariate be known exactly, "without
error". "Measurement error" in the predictors almost always
attenuates the size of the estimated regression coefficient
(reduces it to a value that is on average closer to 0 than the
true value); see (Fuller 1988) for a comprehensive review.
Correlated "measurement errors" in confounded covariates (such as
dust lead and soil lead) could even reverse the apparent
direction of the blood lead vs. environmental lead relationship
(Kupper 1984) . Programs for equation system estimation that
allow specification of "measurement errors" are recommended.

15



3.0 COMPARISON OF TWO LEAD SMELTER COMMUNITIES —
A REGRESSION APPROACH

3.1 INTRODUCTION

The multiple linear and nonlinear regression analyses
relate the concentration of lead in whole blood (PbB, ug Pb per
deciliter of blood) to the concentration of lead in many
environmental media such as lead in air (PbA, jig/m3) , in
household dust (PbD, M9/g) / and in soil (PbS, ng/g) . In the
remainder of this section we will examine only the effects of
environmental lead on children of age one to five years.

The 1983 CDC studies in Kellogg, Idaho (1983a) and in
East Helena, Montana (1983b) are particularly interesting because
they represent two aspects of the problems of lead contamination
in the vicinity of a primary lead smelter. The Bunker Hill
smelter in Kellogg was closed in 1981, so that the Idaho values
represent a more typical situation for cleaning up contaminated
soils. The East Helena smelter was in operation in 1983 when the
CDC survey was carried out (and still is) , and it is known that
the primary source of lead, atmospheric deposition, had remained
at relatively similar levels for at least 5 or 6 years preceding
the study. Thus the East Helena situation represents a long-term
relatively equilibrated exposure with children in the most
heavily exposed zone (PbA of 3 to 4 jig/m3) being significantly at
risk for elevated blood lead.

A multifactorial analysis of the East Helena data has
been developed (Johnson and Wijnberg 1988; Marcus and Holtzman
1988), using a linear total exposure methodology that is
consistent with the USEPA (1986) results. The metabolism and
biokinetics of lead absorption, distribution, and excretion are
sufficiently linear at the low-to-moderate blood lead levels of
interest here (most less than 25 /ig/dl) that a linear total
exposure model appears justifiable. The distribution of PbB is
highly skewed, so that a logarithmic transformation of both PbB
and total exposure is usually required, thus intrinsically
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near curve-fitting methods. An alternative analysis of the
shilling and Bain 1988) emphasized soil lead and excluded

^ of household dust lead (PbD) and air lead (PbA) . Their
ses also used a statistical model that was linear in the
ithms of the exposure variables, resulting in excessively
curvature and in biologically implausible extrapolations to
low concentrations.

MATERIALS AND METHODS
The data consisted of household-specific and child-

.fic information on N = 200 children in Idaho and N = 396
Iren in Montana. The measurements are described in detail in
.lling and Bain 1988; CDC I983ab). The variables used in our
'ses are PbB for each child, PbD and PbS for each house, PbA
.n three concentric rings centered on the smelter (Area 1:
Ln 1.6 km; Area 2: 1.6 to 4 km; Area 3: more than 4 km from
smelter). Other variables included the presence of a smoker
le household (SMOKER = 1 if present, 0 otherwise), and income
L (LOWING = 1 if less than $10,000; 0 otherwise).

Missing values for PbD and PbS were dealt with by
j additional variables to estimate the average blood lead

sment of the missing cases. That is, if PbD were missing,
vas assigned the value 0 and a variable PbDMis set to 1. If
//ere not missing, then PbDMis was set to 0. Likewise, PbSMis
i missing PbS.

The initial full model tested was

In (PbB) = In(b2 + bx SMOKER + b2 LOWING +
b3 PbA + b4 PbDMis + bs PbD + b6 PbSMis + b7 PbS)

(Equation 3-1)

full model in Equation 3-1 fitted the Montana data, but the
ficient for PbA was exceptionally unstable for the Idaho
, the PbSMis coefficient nonestimable as no soil leads were
ing. The Idaho model thus had fewer parameters than the

17



Montana model. Note that the parameters bs and b7 are the PbD
and PbS slopes from the nonmissing data, whereas b4 is the
average blood lead increment for children with PbD missing and b6
the average PbB increment for children with PbS missing.

The other variables used in Schilling and Bain (1988)
included age, which could be dummy-coded (e.g., for AGE = l, AGE
= 2 etc.) or fitted by a quadratic polynomial. The age-related
terms should have properly contributed multiplicatively, as there

*

would be little lead increment from age alone if no PbA, PbD, PbS
were present. That is, one way of including age effects would be
to use a term like

bsl PbD*(AGE=l) + b52 PbD*(AGE=2) +b53 PbD*(AGE=3)
+ bso PbD*(AGE > 3) (Equation 3-2)

instead of bs PbD, and likewise for PbDMis, PbS, PbSMis, where
age-dependent changes related to hand-mouth and play activity are
important. Schilling and Bain (1988) also found that the child's
play outdoor hours (CPOHR) was somewhat predictive. We see
little reason for using this variable as a main effect. That is,
it might be used by b7 PbS*CPOHR.

The air lead variable PbA is somewhat confounded with
AREA in these studies, which is the reason we have omitted it.
As there may be other differences among the study areas, this
could also be studied by using b31 (AREA =1) + b32 (AREA = 2)
instead of b3 (PbA). Large differences in PbB response by AREA
that are not accounted for by PbA, PbD, PbS, or LOWING might be
difficult to explain.

Other variables, such as lead painted housing or
secondary occupational exposure, could also be tested. The log
transform of PbB is known to be normalizing and variance-
stabilizing. The log transformation of the left side of Equation
3-1 (total exposure to lead is not required by the usual
assumptions of nonlinear multiple regression, but is also likely
to be normalizing. The distributions of PbA, PbD, PbS are

18



correlated and highly skewed, hence the total exposure term is
also likely to have a highly skewed distribution that is nearly
normalized by taking logs. This is more defensible than the use
of a log-log linear model

In(PbB) = In(d0) + ̂  In(PbA) + d2 In(PbD)
+ d3 In(PbS) + etc. (Equation 3-3)

The problem with Equation 3-3 is that the predicted PbB = 0 if
any input PbA = 0, PbD - 0, or PbS = 0. Even in a less extreme
case, the PbB vs. PbS slope is nearly infinite for low PbS, flat
for large PbS. The back-transformed version of Equation 3-3 is a
power function model for the geometric mean (G.M.) PbB,

dl d2 d3
G.M. PbB = d0 PbA PbD PbS exp (etc.)

whereas the model for Equation 3-1 is

G.M. PbB = b2 + bi SMOKER + b2 LOWING + b3 PbA + . . .

(Equation 3-4)

There is no plausible biological justification for a completely
multiplicative model such as in Equation 3-3, whereas Equation
3-4 is consistent with linear pharmacokinetics for lead (USEPA
1986) at relatively low exposures. Either model should be able
to give a good description of the data over the observed range,
but the linear model may be more appropriate to estimating the
effects of drastic lead reductions in air or soil (PbA close to
0, PbS close to 0).

3.3 RESULTS

The results of the first set of analyses is shown in
Table 3-1. The models both have large residual standard
deviations, 0.467 in log units for Idaho and 0.445 for Montana,

19



TABLE 3-1. COMPARISON OF LOG-LINEAR REGRESSION MODELS FOR
CHILD BLOOD LEAD

Variables

AIR LEAD

DUST LEAD

SOIL LEAD

MISSING DUST

MISSING SOIL

LOW INCOME

INTERCEPT

CDC/ATSDR
Kellogg

———

1.36*
(0.47)

0.86*
(0.22)

1.42
(1.27)

———

1.88
(1.01)

7.69
(0.96)

1983
E. Helena

0.65*
(0.23)

1.26*
(0.35)

1.54*
(0.64)

1.85*
(0.48)

-1.24*
(0.58)

-0.18
(0.69)

5.37
(0.38)

NOTE: Estimated standard errors in parentheses.
Statistically significant variables marked
by asterisks.
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but are at least as small as those in Schilling and Bain (1988).
The only nonsignificant terras are b2 (LOWING) in both states, and
b4 (PbDMis) in Idaho. The PbD coefficient bs is almost the same
in both locations, 1.361 ± 0.470 (s.e.) nq/dl per 1000 ppm in
Idaho and 1.263 ± 0.353 ng/dl per 1000 ppm in Montana. The
children who had missing PbD values had an average dust lead
increment of 1.419 + 1.267 nq/dl in Idaho and 1.854 ± 0.483 Mg/dl
in Montana. The Montana children with missing PbS had a PbB
increment of b6 = -1.241 ± 0.582 M9/dl. The PbS slope b7 showed
an interesting difference, 0.860 ± 0.225 Mg/dl per 1000 ppm in
PbS in Idaho and 1.537 ± 0.638 /ig/dl per 1000 ppm in Montana.
This difference is not statistically significant, but it is
suggestive. The "background" level b2 is significantly lower in
the Montana children, 5.306 ± 0.374 Mg/dl vs. 7.681 + 0.970 ng/dl
in Idaho. The SMOKER effect b^ is also higher in Idaho, 2.796 ±
0.935 Mg/dl vs. 1.351 ± 0.392 Mg/dl in Montana, but this term
together with b2 for LOWING may be a surrogate socioeconomic
factor.

Both Idaho and Montana studies have substantial
predictive power for population geometric means, but very modest
predictive power for any given individual. The usual assessment
criterion is the coefficient of determination R2 i.e., the
fraction of variance about the mean (SSM) that is attributable to
regression,

R2 = 1 - SSE/SSM

where SSE is the residual sum of squares of the model. For
Idaho, R2 = 0.283; and for Montana, R2 = 0.256.

3.4 DISCUSSION
The multiple regression model fitted here was a

transformed linear total exposure model. While the model does
not significantly improve the dose-response description, it
offers much greater biologically plausibility, interpretability,
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and low-exposure extrapolatability than does a log-log model. At
low to moderate exposure levels in each lead source, the
interindividual differences in lead absorption and the individual
differences in nonattributed exposure sources ("background") are
relatively much more important. Thus the residual GSD for these
children

residual GSD = exp[std.dev.residual In(PbB)]

is very large, GSD = 1.596 for Idaho and GSD = 1.561 for Montana.
Thus the use of the models for estimating individual PbB is not
recommended. The current PbB vs. PbD slopes are on the low end
of the range in USEPA Criteria Document, 1.361 for Idaho and
1.263 for Montana, and the current PbB vs. PbS slopes are
similarly low, 0.860 for Idaho and 1.537 for Montana.

The soil lead relationship in the 1983 study for the
Idaho Silver Valley is similar to that of the 1974-1975 study,
reestimated in USEPA (1986). The PbB vs. PbS slope there was
1.10 + 0.14. Household cleanliness was also a surrogate factor
for PbD, with a strong effect during the era when atmospheric
deposition was very high. Because the preponderant source of
lead exposure was the then-noncompliant smelter, there was much
less relative variability in the blood lead vs. environmental
lead relationship, with a GSD of about 1.30.

Neither lead smelter community is unaware of the health
hazards of undue lead exposure. Public awareness and public
health education efforts must have increased parental vigilance,
on the whole, so that opportunities for contact with leaded soil
and dust during play were reduced, and the frequency of hand
washing, house cleaning and other hygiene practices were
increased. All of these serve to attenuate the apparent
relationship of blood lead to environmental lead. Public health
professionals are to be commended for the apparent success of
these efforts. But it may be still more effective to remove the
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sources of lead contamination, thereby protecting the unaware
children as well as the vigilant ones.

The PbB vs. PbS slope is lower (not quite at 5%
significance) in Idaho than Montana. This could be due in part
to greater awareness in Idaho, or to reduced biological
availability of the particles in the Idaho surface soils. The
Idaho leaded soils may have different physical or chemical
properties, possibly having resided longer without replenishment
from the source smelter.
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4.0 METHODOLOGICAL STUDIES OF EAST HELENA DATA SET
USING STRUCTURAL MODELS

4.1 METHODS AND MATERIALS

In the East Helena study, outdoor environmental lead
was measured in the air (PbA, in Mg/m3) and soil (PbS, in mg/g)
surrounding the homes of 390 children, aged one to five years.
Indoor lead sources were estimated by measuring lead in house
dust (PbD, in mg/g), and by a variable indicating the presence of
lead paint in the houses (Paint). The biological measure of lead
exposure was lead concentration in blood (PbB, in jig/dl) . Age
was also included as an independent variable, since blood lead
levels have been shown to be age dependent. Because the age
dependence is not a linear one, we used indicator variables for
age, where AGE1=1 if age = 1, AGE2=1 if age = 2, AGE3=1 if age =
3, and AGEj = 0, j=l,2,3, otherwise.

Structural equations models used in the Cincinnati
studies were different than those used here. In the Cincinnati
studies, the air lead concentrations were moderate to low, and
therefore air lead was not included in the models. However, in
East Helena the air lead concentration was much higher (averaging
3-4 Mg/ro3 at homes near the smelter) , and direct exposure to air
lead was found to make a significant contribution to blood lead
levels, in addition to its indirect contributions to soil and
dust lead.

Since the distribution of many environmental measures,
including lead, are highly skewed, methods must be used to handle
analyses of non-normal data. A common method is to log-transform
the data to bring them closer to a normal distribution and then
perform analyses on the transformed data. Log-log multiple
regression models for blood lead were fitted by CDC (1986),
Schilling and Bain (1988) . There are two drawbacks to that
method: 1) sometimes the transformation does not create normal
variables, and 2) the relationship may actually be a linear one
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of untransformed variables and not of transformed variables
(Marcus and Cohen 1989).

A different alternative is to use statistical methods
which either do not assume normality or which are robust against
violations of normality. These multivariate methods have been
only recently developed. Also, like other nonparametric methods,
they have less power than parametric methods and therefore
require a larger number of observations when the underlying
distribution is in fact normal. However, parametric (e.g.,
maximum likelihood and elliptical) methods may fail badly if the
distribution assumptions do not hold.

We have examined the data in several ways, using the
EQS structural equations program developed by Bentler (1989).
This program has the capability of performing generalized least
squares, maximum likelihood, elliptical, and arbitrary
distribution analyses. Since generalized least squares and
maximum likelihood tests assume normality, a criterion not met in
this study, we report and compare the elliptical and arbitrary
distribution analyses for both nontransformed and log transformed
data. Elliptical theory requires the distribution of variables
to be symmetric, but not necessarily normal. It also assumes
that all the variables have the same measure of kurtosis.
Arbitrary distribution theory makes no assumptions about the
shapes of the distributions. However it was found to have a
significant but negligible bias in small samples (Browne, 1984).
Data requirements for model fitting are shown in Table 4-1 for
each method.

One drawback discovered in the EQS program is that it
converts all missing values in raw data to zeroes. There were
only two variables with missing values, PbS and PbD, but they are
essential to any model. In order to circumvent this problem, we
first performed an analysis using only complete observations.
About 60% of the sample, or 229 children, were thus included.

We also devised a model-free method to impute missing
values. Each city block in East Helena was numbered, and the
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TABLE 4-1. SOME STRUCTURAL EQUATIONS MODELING METHODS AVAILABLE IN EQS

Methods Distribution Assumptions Data Requirements

Generalized Least
Squares (GLS)

Normally Distributed Raw Data or
Variables Matrix Covariance

Maximum Likelihood
(ML)

Normally Distributed Raw Data or
Variables Matrix Covariance

Elliptical Generalized
Least Squared (EGLS)

Variables symmetrically
Distributed with
Equal Kurtoses

Raw Data Only

Arbitrary or
Distribution-Free
Least Squares
(AGLS)

No Distribution
Assumptions

Raw Data Only

26



numbered block location of each child was included in the data.
We assumed that households located near each other would have
similar lifestyles, and thus similar soil and dust
characteristics. We therefore assigned the calculated geometric
mean PbS and PbD value of the block to any observation missing
those values. This brought our sample size up to 366, or about
94% of the sample.

This method was similar to the way air lead values were
imputed. Air lead values were assigned on a block-by-block basis
based on a smooth interpolation of average yearly concentrations
from monitoring sites. This was based on our assumption of
homogeneous mixing of air within a limited area. Comparable
smoothing of soil and especially dust lead is less plausible.

Because the data were not normally distributed, and a
linear relationship was assumed, we first found the best
plausible linear model with nontransformed variables using
asymptotic distribution free estimates. We then used that model
as a basis for comparison with log transformed data.

In our search for the best model, we removed all
nonsignificant relationships in a stepwise procedure and tested
the fit. Unfortunately, when all nonsignificant relationships
were removed, the model was saturated, and no goodness-of-fit
test could be performed, i.e., the fitted covariance matrix of
the variables exactly matched the observed covariance matrix.
Therefore, in order to compare the linear and log models, we
needed to include one nonsignificant relationship. We chose the
most significant of them. The inclusion of this relationship had
little effect on the size of the coefficients found in the
saturated model. We compared the saturated and unsaturated
models for both linear and log-transformed data.
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4.2 RESULTS

We will not shown the detailed results here. They are
presented in Marcus and Bernholc (1989). The models needed for
intersite comparisons are given in Sections 5 and 7. Figure 4-1
shows the unsaturated structural equation diagram fitted by the
AGLS on nontransformed variables and used as a basis of
comparison. Only the contribution of house-paint lead was not
significant in the larger data set (with missing values imputed).
We were surprised that the house-paint lead did not directly
contribute significantly to either dust lead or blood lead.
However, it did contribute to soil lead in the smaller data set.
We assume that the exteriors of most houses whose interiors where
painted with lead' paint were also painted with lead paint, and
that chipping and erosion occurs more heavily on the outside of
houses. Another possibility is that the older houses (i.e., more
lead paint and/or more paint chipping) were located closer to the
smelter, where both the air and soil would have a higher lead
content. This hypothesis is strengthened by the finding of a
significant correlation between lead in air and lead in
housepaint. However, the relationship between housepaint lead
and soil lead cannot be explained totally by air lead.

Three equations were necessary to define this model:

PbB = a0 + aj^ PbD •+• a2 PbS + a3 PbA + EL
(Equation 4-1)

PbD = b2 + bi PbS + b2 PbA + E2 (Equation 4-2)

PbS = c0 + cx PbA ( + c2 Paint) + E3 (Equation 4-3)

The coefficients and their standard errors are different for each
method used, as well as for each data set and for raw vs. log
transformed variables. A summary of model goodness of fit is
given in Table 4-2.
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TABLE 4-2. GOODNESS OF FIT STATISTICS FOR EAST HELENA ANALYSES

Data Set N Data Method x2 df

Complete 229 Raw ERLS 1.801 2 0.406
AGLS 3.574 2 0.167

Log ERLS 4.44 2 0.108
AGLS 5.96 2 0.051

Expanded 366 Raw ERLS 0.199 2 0.905
AGLS 0.415 2 0.813

Log ERLS 3.983 2 0.137
AGLS 5.306 2 0.070
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FIGURE 4-1. ENVIRONMENTAL PATHWAYS FOR LEAD IN EAST HELENA CHILDREN
(Coefficient Estimated by Structural Equation Model)
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In all three equations, the coefficients and standard
errors are not affected greatly by the methodology used. Neither
were they greatly influenced by including Paint in the model.
The largest differences are found when comparing raw data to log-
transformed data, and when comparing the smaller data set with
only complete observations to the larger data set with imputed
values for soil and dust lead.

In Equation 4-1, the effect of PbS on PbB, in the
smaller data set, lost significance in the log transformed model,
and the effect of PbA gained significance. Although this pattern
is similar in the larger data set, it is not as drastic.

When comparing the smaller data set to the larger one,
the effect of PbD on PbB seems to have lost some significance,
although it remained an important contributor to PbB. The effect
of both PbS and PbA on PbB gained significance. The reason for
this dramatic shift of the coefficients from the smaller data set
to the larger one is not apparent. Perhaps the method of
imputation was not an accurate one. Or, the smaller data set may
not be representative of the population (i.e., it might be biased
in some way).

In Equation 4-2 all relationships are comparable and
highly significant. The effect of PbS on PbD gained significance
in log transformed data in both the saturated and unsaturated
models for both data sets. However the effect of PbA on PbD lost
significance for the log transformed data in the smaller data
set, and gained significance in the larger data set. Both PbS
and PbA were of higher significance in the larger data set.

Although PbA has a very significant effect on PbS, this
significance is nearly doubled for log transformed data. Also,
Paint seems to have a significant effect on PbS in the smaller
data set, but not in the larger one. Possible reasons for this
were stated in reference to Equation 4-1.

One can use goodness-of-fit statistics to test the fit
of the model. The fit will depend upon the data set used, the
type of data (raw or log-transformed), and the method of
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estimating the coefficients. Note that the larger the p-value,
the better the fit.

4.3 DISCUSSION

We have shown that different model specifications and
statistical treatments of environmental lead data can lead to
strikingly different conclusions about the relative importance of
environmental lead pathways for children. A linear total lead
uptake model is biologically plausible, at least at the lower end
of the lead concentration ranges that are currently of interest.
The linear specifications of the model that we use here are
consistent with earlier USEPA studies using multiple linear and
nonlinear regression methods (USEPA 1986, 1989). The
asymptotically distribution-free methods in the EQS program allow
estimation of model coefficients, even though the variables have
highly skewed distributions. Although the coefficients obtained
via ERLS were surprisingly similar to those obtained by AGLS, the
significance of these coefficients differed. The ERLS method is
much more restrictive, and since the data does not seem to meet
these restrictions, the AGLS method is more valid.

The explicit inclusion of measurement errors Elf E2,
and E3 should greatly reduce the bias or attenuation of the
estimated coefficients (Fuller 1987). Estimation of the lead
coefficients as a coupled system should be more informative than
separate estimation of the component equations.

The estimated standard deviations of Elt E2, and E3 are
about 4 Mg/dl for blood lead, about 500 ppra for dust lead, and
about 800 ppm for soil lead. The variability in E2 and E3 may
indicate in addition to measurement error, the extent to which
the measured variable, such as composite soil lead from front and
back yards, may differ from the average lead concentration in the
soils actually ingested by the child. Analyses with disaggregate
measurements may suggest a very different weighting. For
example, back yard soil concentrations might typically have twice
the weight or influence than front-yard concentrations in
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predicting blood lead, but back yard soil lead concentrations
might have only half the influence of front yard soils in
estimating living room dust concentration (which also affects
blood lead) . We have no way of knowing that such is the case,
but this should be investigated in the forthcoming Superfund Soil
Lead Demonstration Abatement Project or SSLDAP (Bornschein et al.
1988) .
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5.0 STRUCTURAL EQUATION MODELS IN THREE STUDIES WITHOUT
HAND LEAD DATA

5.1. DATA SETS AND MODEL CONSTRUCTION

Most of the recent prospective lead abatement studies
have used the child's hand lead burden as the most proximate
index of childhood lead exposure from soil and dust lead. We
here compare the two earlier CDC studies in Kellogg and East
Helena, in which no hand leads were collected, with a more recent
study carried out at Midvale, Utah. This will allow us to
assess the role of statistical methodology and structural
equations model formulation in a variety of situations in which
the data bases contain relatively similar variables. We may then
test the similarity of the models by formal statistical
significance tests of the equality of corresponding regression
coefficients.

The role of hand lead in these models is played by the
product of household dust lead concentration multiplied by a
normalized index of total mouthing behavior. The cross-product
is therefore not a linear function of dust lead, although they
are strongly correlated. In the Kellogg and East Helena studies,
the mouthing behavior index was constructed from four binary
indices and four three-point indices whose levels were "a lot",
"once in a while", "almost never". We coded the binary
indicators as 0 or 1, and the ternary indicators as 2, 1, 0 for
each response. In the Midvale study, the ternary indicators were
mpre directly related to frequency of consumption, with responses
"practically never", "about once a month", and "about once a
week" coded as 0, 1, and 4 respectively. Investigation of the
most predictive weighting and coding of mouthing behavior indices
would be useful. We summed the indices and divided the sum by
its average in the whole data set, without regard to age or
missing values of dust or soil lead. Thus the surrogate variable
for hand lead burden is * (dust lead concentration) * (frequency
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of all mouthing), where the mouthing frequency has been
standardized as above.

The air lead concentrations were high only in the 1983
East Helena data set. Our reconstruction of air lead
concentrations at each block in East Helena was possible only
because of a rather dense network of air lead monitors at various
sites in East Helena during 1981-1983. The CDC study in East
Helena divided the houses into three concentric circular areas:
Area 1 within 2.25 miles of the smelter, Area 2 from 2.25 to 5
miles, and Area 3 beyond 5 miles. The empirical air lead
estimates showed a highly non-concentric pattern that closely
matched the pattern of soil and dust lead concentrations. In
order to facilitate comparison with the other two sites, we
retain these three areas and assume that the dummy variables
AREA1 (Area 1) and AREA2 (Area 2) are surrogate indices of
exposure from air lead. The air lead levels around the inactive
lead smelter in Kellogg were relatively low in 1983, and the
three COC areas correspond to the communities of Smelterville
(AREA1), Kellogg (AREA2), and the more remote Pinehurst district
as a baseline. The detailed location of the houses sampled in
Midvale were also available, but there were at least two
potential lead sources, an inactive smelter and some large
tailings piles, so that we used a general quadratic model rather
than a concentric pattern for spatial dispersion of lead in
developing our Midvale model.

The use of AREA1 and AREA2, or X and Y, were not the
only site-specific or idiosyncratic variables used in these
models. Socio-demographic factors play an important role in
blood lead levels. We used CDC's 3-level index of income for the
Kellogg and East Helena models, but the more detailed
Hollingshead scale for socio-economic status (SES) reported in
Midvale. We likewise excluded information on lead paint, as this
was missing or believed to be somewhat unreliable. The
appropriate paint lead surrogates for the Midvale data were
categories of house age (19th Century, post-War).

35



The models were otherwise completely comparable. The
response variables in the four equations were blood lead, soil
lead, dust lead, and the hand lead surrogate variable of dust
lead times standardized frequency of mouthing behavior. The
general scheme was:

(area, location, or air lead) —> soil lead

soil lead + air lead —> dust lead

dust lead + mouthing + (age) + income —> hand lead
(surrogate is dust lead X mouthing)

soil lead + dust lead + hand lead + air lead + (age) +
socio-economic status or income —> blood lead

These equations reflect plausible a priori hypotheses about
causal processes and mechanisms. Similar models have been
derived for other sites by the Cincinnati investigators.
Therefore, the significance levels from the chi-squared tests for
model adequacy may be taken at face value. All of the models
described below were fitted initially by GLS estimates, which
were improved by the EGLS method, and the final parameters
estimated with the asymptotically distribution-free AGLS method.
The AGLS models are all adequate at the usual nominal 5%
significance level.

5.2 RESULTS
Our final effort to develop a plausible model for

environmental lead pathways used the area-wide average air lead
concentration. Even though air leads are currently very low in
Kellogg, the low air lead concentration was a very useful and
predictive surrogate for the previously much higher air lead
levels, possibly because of fugitive emissions from smelter waste
piles and from reentrainment of remaining pockets of fine surface
soil and dust particles. Thus, the air lead regression
coefficients for Kellogg are much higher than elsewhere, but the
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predictive value of these concentrations should not be ignored.
The East Helena air leads were high, and very predictive.
Results are shown in Tables 5-1 through 5-5.

Table 5-1 shows that the AGLS model provides a
satisfactory fit to the data, and that the blood lead equation is
not the major source of lacJc of fit. Table 5-2 shows the blood
lead models in more detail. Note that the hand lead surrogate
coefficients are almost identical and highly significant, and
that the difference between Kellogg and East Helena dust lead
coefficients is not significant. Table 5-2 also shows that
interior dust lead contributes strongly to blood lead. Both dust
lead and dust lead X mouthing frequency are forced into the
equation, and both are statistically significant in AGLS models.
We could re-express this as

blood lead = bx (dust lead) + b2 (dust lead)
(mouthing) +

However, the total dust lead coefficient varies from child to
child: bx for a child with no perceived mouthing behavior, b^ +
b2 for a child with average perceived mouthing behavior, bx + 2
b2 for a child with twice the average amount of mouthing etc.
Income is not a significant predictor of blood lead, and age is
significant only for the East Helena children. The blood lead
vs. soil lead coefficient is significantly lower in Kellogg than
in East Helena. Air lead levels, characterized as area averages
rather than household-specific values, were not predictive in
East Helena, but were highly predictive in Kellogg where air lead
levels in 1983 were much lower. This underscores the importance
of exposure indices that are specific to the individual subject,
since the detailed model for East helena developed in the
preceding section found that air lead on a block average basis
provided a good predictor, over and above soil lead and dust lead
levels. The air lead levels in the Idaho study were believed to
be too low to provide much additional information, even if there
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Table s-l. Comparison of Structural Equation Models
GOODNESS OF FIT

Loss Function

Chi-Squared

DF

P

Largest
Residuals
in Variance
or
Covariance

GLS
Kellogg

0.19768

27.873

12

0.00577

VAR(PBS)

COV(PBS,PBD*
MOUTHS_ALL)

COV(PBS,
PBB)

COV(PBS,
PBD)

COV( INCOME,
PBD*
MOUTHS ALL)

E. Helena

0.11475

26.508

12

0.00909

VAR(PBD*
MOUTHS_ALL

COV(PBS,PBD*
MOUTHS_ALL)

COV(PBD,
AGE1)

COV(PBD*
MOUTHS ALL,
AGE1)

COV(PBD*
MOUTHS ALL
MOUTHS ALL)

AGLS
Kellogg

0.05319

7.500

12

0.82290

VAR(PBD)

VAR(PBS)

COV(PBD,PBD*
MOUTHS_ALL)

VAR(PBD*
MOUTHS_ALL)

COV(PBS,PBD*
MOUTHS_ALL)

E. Helena

0.07875

18.190

12

0.11004

VAR(PBD*
MOUTHS_ALL)

COV(PBD,PBD*
MOUTHS_ALL

VAR(PBD)

COV(PBD*
MOUTHS ALL,
PBB)

VAR(PBB)

This model uses indicator variables for age and
observed air lead.
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Table 5-2. Comparison of Structural Equation Models
BLOOD LEAD EQUATION

Variables

SOIL LEAD

DUST LEAD

DUST LEAD*
MOUTHS_ALL

AGE1

AIR LEAD

INCOME

GI
Kellogg

0.000COM

(0 .039)

1.268*
(0.588)

0.847*
(0 .453)

-5.328**
(1.985)

36.16***
(11.00)

-1.035NS

(0.773)

,S AGLS
E. Helena

2.120***
(0.565)

0.793*
(0 .433)

0.814**
(0 .309)

-0.489NS

(0.898)

0.000CON

(0.018)

0.776NS

(0.753)

Kellogg

0.341*
(0.160)

1.220*
(0.582)

0.922**
(0.361)

-5.717***
(1.773)

21.90***
(7.08)

-1.046NS

(0.826)

E. Helena

2.236***
(0.786)

0.599NS

(0 .404)

0.940***
(0.310)

-0.337NS

(1.024)

O.OOO0011

(0.021)

0.445NS

(0.592)

NOTE: Statistical significance (two-tailed)

*** means P < 0.001
** means 0.001 < P < 0.01
* means 0.01 < P < 0.05
+ means 0.05 < P < 0.10 (0.05 one-tailed)
NS means P > 0.10
CON means that the estimate was constrained at

its lower bound.

Asymptotic standard errors in parentheses.

This model uses indicator variables for age, and uses observed air lead.
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Table 5-3. Comparison of Structural Equation Models
SOIL LEAD EQUATION

GLS
Variables

AIR LEAD

SOIL LEAD

AREA1

AREA2

Kellogg

28.45***
(5.87)

0.097*
(0.041)

-7.758**
(2.96)

52.98***
(16.80)

E. Helena

0.290***
(0.026)

DUST LEAD

0.892***
(0.101)

-0.274NS
(0.614)

0.290NS
(0.212)

AGLS
Kellogg

27.24***
(5.23)

EQUATION

0.091*
(0.054)

-0.066NS
(0.498)

8.05***
(2.78)

E. Helena

0.280***
(0.033)

0.884***
(0.135)

-0.544NS
(0.552)

0.325+
(0.186)

NOTE: Statistical significance (two-tailed)

*** means P < 0.001
** means 0.001 < P < 0.01
* means 0.01 < P < 0.05
4- means 0.05 < P < 0.10 (0.05 one-tailed)

NS means P > 0.10

Asymptotic standard errors in parentheses,
estimate is constrained to be non-negative.

CON means that parameter

This model uses indicator variables for age, and uses
observed air lead.
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Table 5-4. Comparison of Structural Equation Models
DUST LEAD * MOUTH ALL

GLS
Variables

DUST LEAD

MOUTHS_ALL

AGE1

INCOME

Kellogg

0.908***
(0.034)

1.987***
(0.094)

-0.149NS
(0.184)

0.024NS
(0.071)

E. Helena

1.088***
(0.043)

1.256***
(0.099)

-0.246NS
(0.161)

0.124NS
(0.130)

AGLS
Kellogg

0.861***
(0.047)

1.969***
(0.139)

-0.143NS
(0.115)

-0.014MS
(0.047)

E. Helena

1.925***
(0.057)

1.086***
(0.129)

-0.196NS
(0.205)

0.100**
(0.037)

NOTE: Statistical significance (two-tailed)

*** means P < 0.001
** means 0.001 < P < 0.01
* means 0.01 < P < 0.05
+ means 0.05 < P < 0.10 (0.05 one-tailed)
NS means P > 0.10

Asymptotic standard errors in parentheses.

This model uses indicator variables for age, and uses
observed air lead.
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Table 5-5. Comparison of Structural Equation Models
MEASUREMENT STANDARD DEVIATIONS

GLS
Variables

BLOOD LEAD
(Mg/dL)

DUST LEAD
(Mg/g)

SOIL LEAD
(Mg/g)

DUST LEAD*
MOUTHS ALL
(Mg/g)

Kellogg

6.13
(0.126)

1315
(0.123)

3415
(0.128)

583
(0.122)

E. Helena

3.70
(0.102)

748
(0.097)

511
(0.097)

641
(0.099)

AGLS
Kellogg

6.05
(0.137)

1157
(0.298)

2190
(0.330)

590
(0.199)

E. Helena

3.60
(0.129)

661
(0.155)

537
(0.159)

540
(0.249)

Relative standard error of variance shown in parentheses.

This model uses dummy variables for age, and uses observed
air lead.
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had been a sufficiently dense air sampling network to allow
estimation of air leads specific to each house. It is obvious
that air lead in the Idaho study is a surrogate variable for
other site-specific differences. Further exploration of these
data have not identified any variables that do a better job of
explaining these differences-. Since the AGLS models presented in
Table 5-2 produce a reasonably consistent set of hand dust lead
estimates and very non-significant P values, we will recommend
use of this model specification.

The soil and dust lead pathway equations in Table 5-3
are also the most plausible of those models developed. The soil
lead vs. air lead coefficient for East Helena is plausible; that
for Kellogg is not, but the model is retained for purposes of
comparison. The dust lead models are particularly interesting.
In this case, the AGLS estimates for dust lead vs. soil lead and
dust lead vs. air lead are positive and statistically significant
(one-tailed) . The dust lead vs. soil lead coefficient is much
lower around the inactive smelter in Kellogg, but the air lead
coefficient is much higher. In view of the problems in
interpreting the soil and blood lead vs. air lead coefficients,
we cannot comment further on the dust lead coefficient either.
It is possible, however, that the difference in dust lead vs.
soil lead coefficients is indicative of a real difference in the
relative importance of environmental lead pathways in these two
communities. The inclusion of a dummy variable for AREA1 does
not much affect this conclusion.

In Table 5-4, we show that the cross-product of dust
lead and mouthing frequency has a strong linear correlation with
its linear components, dust lead and mouthing. Neither age nor
income significantly improve the model for this surrogate hand
lead variable, which is not perfectly collinear with dust lead.
This constructed variable should therefore have many of the
statistical properties of real-life hand lead data, and should be
a useful surrogate index of proximate exposure to dust lead.
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Estimates of the surrogate variable and measurement
uncertainty are shown in Table 5-5. Note that estimates of the
blood lead standard deviation (6.0 fj.g/dl in Kellogg and 3.6 Mg/dl
in East Helena) are much larger than the stated analytical
errors, thus reflect differences among individual children in
lead exposure and in biokinetics of lead absorption and
elimination. The standard deviations in soil lead and dust lead
concentrations reflect differences in lead pathways that are not
adequately characterized by the composited exterior soil and
interior dust measurements. These are large for the Kellogg data
(2190 Mg/g for soil lead, 1157 ng/q for dust lead). The
environmental lead data for East Helena have much less
idiosyncratic variability from one house to another, only 537
Mg/g for soil lead and 661 Mg/g for dust lead. This shows that
around the active lead smelter in East Helena, soil and dust lead
levels remain correlated from the major point source of exposure.
The greater surrogate measurement variability in Kellogg suggests
that during the two years in which the Bunker Hill smelter was
inactive, other human activities continued to modify the
household soil and dust lead levels. The uncertainty associated
with our hand lead surrogate is much smaller than that of dust
lead, 590 Mg/g in Kellogg and 540 M9/9 in East Helena. The
constructed hand lead variable appears to be a very useful index
of exposure.
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6.0 COMPARISON WITH THE MIDVALE STUDY

6.1 MATERIALS AMD METHODS

The 1983 CDC studies were the most directly comparable
of the studies whose data were available to us. We were also
interested in the extent to which these older studies could be
compared with a recent study using somewhat different variables.
The Midvale study was carried out in a Utah community which had
formerly been the site of extensive metal smelting and processing
operations (Bornschein et al. 1990). Elevated levels of lead
were still found in soil and dust near the industrial sites.
Data were provided to U.S. EPA by Dr. Bornschein and his
associates, and EPA provided the data to us. Extensive
preliminary analyses were performed on this data set (Marcus and
Bernholc 1990). We report here only those results that are most
directly comparable to the methodological studies in Sections 4
and 5. The more detailed models included an additional equation
for paint lead loadings predicted by location, housing age, and
the recent occurrence of paint removal (interior or exterior).
The simpler models here are based on the following structure:

location + house age + paint removal —> soil lead
soil lead +• paint removal + SES —> dust lead
dust lead + mouthing behavior + age + SES —> hand lead

(surrogate measure is dust lead X mouthing
frequency)

dust lead + hand lead + soil lead + age 4- SES + paint
removal —> blood lead.

The sample size here was relatively small, only N = 135 for whom
essentially complete environmental and biological data were
available. The mouthing behavior variable was also different,
more directly representing the frequency of mouthing behavior
than those items used in the CDC interviews. The soil lead
variable we used for these analyses was not a composite of front
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and back yard soil samples, but a composite of the soil samples
taken at the dwelling unit yard perimeter.

6.2 Results
The goodness of fit summary in Table 6-1 shows that the

AGLS model provides a satisfactory fit (P = 0.12) to the data.
The extra degrees of freedom are related to the much more
detailed information on location of individual households, and on
the additional information on effects of paint removal.

The AGLS blood lead regression model in Table 6-2 is
somewhat different than those derived for the Kellogg and East
Helena children. The first difference is that the soil lead
regression coefficient is large (3.05 M<?/dl per mg/g lead in
perimeter soil, whereas the interior dust lead coefficent is
constrained at 0. The regression coefficient for dust lead X
mouthing frequency is comparable to the sum of the two dust lead
coefficients in the other models, about 1.55 Mg/dl per mg/g lead
in interior dust for a child with average mouthing behavior. The
interview questions and frequency coding for mouthing behavior
used by the Cincinnati investigators in Midvale appear to provide
a more effective characterization of the hand-to-mouth pathway
for dust lead than does the analogous index we used for the
Kellogg and East Helena children. The AGLS model also shows a
marginally significant increase in blood lead from paint lead
removal (about 0.7 M9/dl even long after the abatement).
Children at age 6 to 17 months (AGE1 = 1) had significantly lower
blood leads than older children, and those with higher SES also
had significantly lower blood leads.

The soil lead model in Table 6-3 shows a significant
quadratic response surface with significant "ridge" of elevated
soil lead towards the northeast suggesting a relatively localized
source. Post-war housing had significantly lower perimeter soil
lead levels, about 292 M9/9> Nineteenth century housing had
slightly (but non-significantly) increased soil leads. The dust
lead model in Table 6-4 shows that soil lead is probably a major
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Table 6-1. Comparison of Structural Equation Models
GOODNESS OF FIT

Midvale
GLS AGLS

Loss Function

Chi-Squared

DF

0.29881

80.379

40

0.18856

50.722

40

<0.001 0.11922

Largest
Residuals
in Variance
or
Covariance

VAR(PBB)

COV(PBB,
PBD)

VAR(X)

VAR(PBD)

VAR(PBS)

VAR(AGE1,
RMVPNT)

VAR(X, VAR(PBB)
PBD*MOUTHS ALL)

COV(PBB,
XSQR)

VAR(PBB)

COV(SES,
MOUTHS_ALL)

COV(PBS,
AGE SQ)
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Table 6-2. Comparison of Structural Equation Models
BLOOD LEAD EQUATION

Variables
Midvale

GLS AGLS

SOIL LEAD 2.199***
(0.711)

3.047***
(0.889)

DUST LEAD 0.000COM
(0.007)

O.OOO0011
(0.006)

DUST LEAD*
MOUTHS ALL

1.665***
(0.569)

1.553**
(0.577)

AGE1 -1.378*
(0.631)

-1.744***
(0.574)

SES -0.0813***
(0.0246)

-1.0587***
(0.0114)

REMOVE PAINT NS0.651
(0.562)

0.676+
(0.402)

NOTE: Statistical significance (two-tailed)

*** means P < 0.001
** means 0.001 < P < 0.01
* means 0.01 < P < 0.05
+ means 0.05 < P < 0.10 (0.05 one-tailed)
NS means P > 0.10
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Table 6-3. Comparison of Structural Equation Models
SOIL LEAD EQUATION

Variables
Midvale

GLS AGLS

PRE 20

POSTWW2

XSQR

YSQR

XY

RMVPNT

0.148+
(0.090)

-0.339***
(0.066)

-1.228***
(0.304)

0.468*
(0.202)

2.158***
(0.770)

-0.164MS
(0.124)

-0.467MS
(0.438)

-0.045NS
(0.045)

0.101NS
(0.072)

-0.292***
(0.055)

-1.179***
(0.295)

0.320**
(0.126)

2.126***
(0.602)

-0.050NS
(0.067)

-0.523NS
(0.379)

-0.0038NS
(0.025)

NOTE: Statistical significance (two-tailed)

*** means
** means
* means
+ means
NS means P

P < 0.001
0.001 < P < 0.01
0.01 < P < 0.05
0.05 < P < 0.10 (0.05 one-tailed)
> 0.10
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Table 6-4. Comparison of Structural Equation Models
DUST LEAD EQUATION

Variables

SOIL LEAD

PRE20

POSTWW2

REMOVE PAINT

SES

GLS

0.717***
(0.091)

0.060NS
(0.119)

0.084NS
(0.304)

0.075NS
(0.060)

-0.0094NS
(0.0280)

Midvale
AGLS

0.756***
(0.077)

-0.075NS
(0.060)

0.060NS
(0.295)

0.320**
(0.027)

0.0109NS
(0.0093)

DUST LEAD*MOUTHS_ALL

DUST LEAD

MOUTHS_ALL

AGE1

SES

0.539***
(0.056)

0.548***
(0.034)

0.013NS
(0.055)

-0.011NS
(0.021)

0.834***
(0.060)

0.504***
(0.043)

-0.004NS
(0.033)

-0.0700*
(0.030)

NOTE: Statistical significance (two-tailed)

*** means P < 0.001
** means 0.001 < P < 0.01
* means 0.01 < P < 0.05
+ means 0.05 < P < 0.10 (0.05 one-tailed)

NS means P > 0.10
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source of dust lead, contributing about 76% of the household dust
lead concentration. Paint removal has also significantly
increased soil lead, with an after-effect averaging 83 Mg/g.
Neither SES nor housing age added significantly to household dust
leads, apart from their correlation with these other factors.
The hand lead surrogate (dust lead X mouthing) showed a strong
linear dependence on dust lead and mouthing behavior, as we
expected from the construction of this variable, and a modest
dependence on SES.

The surrogate measurement errors estimated in Table 6-5
are much smaller than those in Sections 4 and 5, The more recent
study appears to give much more relevant information about
environmental lead pathways in children than do the earlier
studies. We would optimistically attribute this to a combination
of: (1) improved analytical methods for environmental and
biological lead samples, (2) much more refined sampling protocols
for soil, dust, and blood, and (3) improvements in survey
questions for household risk factors and individual child
behaviors that affect lead exposure.
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Table 6-5. Comparison of Structural Equation Models
MEASUREMENT STANDARD DEVIATION

Midvale
Variables GLS AGLS

BLOOD LEAD 2.76 2.41
(0.100) (0.138)

SOIL LEAD 238 155
(0.091) (0.282)

DUST LEAD 306 205
(0.097) (0.118)

DUST LEAD* 233 176
MOUTHS_ALL (0.100) (0.195)

Relative standard error of variance shown
in parentheses.
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7.0 CONCLUSIONS AND DISCUSSION

The comparable structural equation regression estimates
for three sites are shown in Table 7-1. We have chosen three
rather different situations, even though all three are related to
the processing of lead ores and the emission of leaded
particulates into the environment of nearby communities. The
Smelterville community near Kellogg had been the site of a
primary lead smelter for nearly a century, including a period of
time after a Sept. 1973 baghouse fire in which extremely high
lead levels were found in the air, in soils and dusts, and in
children. However, the Idaho smelter had been inactive for two
years preceding the 1983 survey. The community had been made
aware of the dangers of childhood lead poisoning for over a
decade, and it is likely that substantial effort was still being
put into household cleaning and dust control, and other measures
intended to reduce contact of children with leaded dusts and
soils. The East Helena smelter was still active in 1983, and had
been operating at roughly the same level of activity for at least
five years preceding the 1983 study. In Midvale, the lead
smelting had ceased long ago, but there was still some concern
about high levels of lead that remained in many household soils
and in large piles of mine wastes and mill tailings. Many
residents of Midvale were newcomers whose awareness of childhood
lead hazards may not yet be fully developed.

The summary of results in Table 7-1 show a surprising
amount of consistency, in spite of our efforts to develop models
that were specific to risk factors in each community. Note that:

(1) The coefficients between blood lead and total dust
lead are not significantly different among the three communities.
The coefficients between blood lead and the surrogate hand lead
variable Must lead times frequency of mouthing behavior) are not
significantly different among the three communities. This
suggests that lead in fine household dust particles has roughly
the same bioavailability, whatever the source of the household
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dust lead (e.g. soil tracked into the house, particles deposited
from the air, or fine fragments of peeling lead paint).
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TABLE 7-1. STRUCTURAL EQUATION MODEL
COMPARISONS FOR THREE STUDIES

Variables Kellogg
BLOOD LEAD
E. Helena Midvale

SOIL LEAD

DUST LEAD
+DUST LEAD*
MOUTHS_ALL

DUST LEAD*
MOUTHS_ALL

AGE1

0.34
(0.16)

2.14
(0.85)

0.92
(0.36)

-5.72
(1.77)

2.24
(0.79)

1.54
(0.51)

0.94
(0.31)

-0.34
(1.02)

3.05
(0.89)

1.55
(0.58)

1.55
(0.58)

-1.74
(0.57)

DUST LEAD*MOUTHS ALL (surrogate for hand lead)

DUST LEAD

MOUTHS ALL

0.861
(0.047)

1.969
(0.139)

0.925
(0.057)

1.086
(0.129)

0.834
(0.060)

0.504
(0.043)

DUST LEAD

SOIL LEAD 0.091
(0.054)

0.884
(0.135)

0.756
(0.077)

Estimated standard errors in parentheses.
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(2) The direct coefficient from soil lead to blood
lead is not significantly different for East Helena and Midvale
children: it is significantly smaller for Kellogg children. This
suggests that, under some circumstances, soil lead may be
relatively less bioavailable at some sites than at others. We
cannot identify any factors within the data set that may account
for this difference. The fact that there is an indirect pathway
from soil lead to dust lead to blood lead already been included
in these models, so that this estimates a separate and distinct
route of exposure to lead in soil other than the house dust
pathway.

(3) Both direct and indirect pathways for exposure to
soil lead are statistically significant at all sites.

(4) Blood leads are significantly lower for one-vear
olds (age 6 to 17 months) at Kellogg and Midvale. and lower at
East Helena. The 1-year-old blood leads in the Idaho sample
average 5.7 Mg/dl lower than those of older children, even when
adjusted for income and location. We may attribute this to the
fact that the Bunker Hill smelter closed in November, 1981, and
the sample was taken about 21 months later in August, 1983. The
older children would have accumulated much higher body burdens of
lead during the earlier period, and the excessive lead stored in
the body would contribute to elevated blood leads in older
children not seen in the 1-year-olds.

(5) The pathway from soil lead to dust lead is also
significantly less at Kellogg than at E. Helena or Midvale. At
Midvale and E. Helena, house dust lead concentration is 76 to 88
percent of the soil lead concentration near the house. This
suggests that soil lead is a primary source of present dust lead
levels in these communities. The ratio is much lower in
Kellogg, only 9 percent. Adjustment for area differences may
account in part for the lower ratio, but the result persists
across a wide variety of model specifications and is likely to be
real. One possible explanation is that the greater attention to
house cleaning and more time for cleaning to take effect without
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rapid house dust recontamination may largely "uncouple" dust lead
and soil lead in Kellogg. Note that the blood lead vs. total
dust lead coefficient is somewhat higher in Kellogg (2.14 /ig/dl
per mg/g dust lead, vs. 1.54-1.55 jig/dl per mg/g in the other
communities), which partially offsets the lower soil lead
coefficient (0.34 M9/dl per mg/g), suggesting some possibility of
confounding between soil and dust hazards.

(6) The regression coefficients for (dust lead X
Mouths_all) vs. dust lead are not significantly different, 0.834
to 0.925. This is not surprising, since the average mouthing
frequency has been standardized to have mean value 1. The
downward bias may reflect covariation between dust lead levels,
mouthing behavior, age and socioeconomic status. Likewise, the
significantly different linear regression coefficient for (dust
lead X mouths_all) vs. (mouths_all) is roughly proportional to
the mean dust leads in the three studies. We have used this
response variable in place of hand lead loading, which was not
available for these studies but will be available for most
others. The non-linear variable we constructed is not perfectly
collinear with dust lead, so that we may still use the structural
equations approach. In fact, this variable is a relatively good
proximate predictor of childhood blood lead — better than dust
lead alone.

The statistical method used to fit the models may
strongly affect the statistical significance of the coefficients.
This controls the structure of the model that is finally
selected, if pathways are retained only when they have
statistically significant coefficients. We do not recommend this
practice. The physical and biological plausibility of the
pathway should govern its inclusion or exclusion in the model,
since the validity of nominal significance levels depends
completely on using the models only to test pre-specified
(causal) hypotheses. We have emphasized the most robust of the
methods currently implemented in statistical programs for
microcomputers, the AGLS (Arbitrary distribution Generalized
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Least Squares) method that is known to be distribution-free in
large samples. The AGLS models are in general consistent with
models in earlier EPA documents, but provide a great deal of
additional information on the relative importance of different
environmental lead pathways.

We have shown that it is possible to develop very
useful statistical models for comparison of potential childhood
lead burdens from environmental lead in the home environment of
the child. Similarity of data base variables and statistical
analysis methods allow meaningful inclusion of site-specific
differences in lead exposure. Fortunately, it may not be
necessary to perform a site-specific survey of potentially
affected populations in order to make a realistic assessment of
risk. Our analyses showed that many parameters are similar from
one site to another, in spite of differences in lead source and
pattern of early childhood exposure. Additional studies in
progress will allow us to identify those site-specific parameters
that are critical for risk assessment. These are likely to
include site-specific differences in soil-to-dust pathways,
previous lead exposure history, and bioavailability of leaded
dusts and soils. Site-specific factors that can be easily
determined by rapid field data collection and laboratory analyses
could be used to provide input parameters to generic predictive
models, such as the EPA or CDC lead biokinetic models. This will
facilitate the estimation of abatement effectiveness or soil
cleanup levels using only the critical site-specific information.
We have shown that some inter-site comparisons will require site-
specific information on lead pathways.
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